Dopant effects on the structural, optical and electromagnetic properties in multiferroic Bi$_{1-x}$Y$_x$FeO$_3$ ceramics

Minh N.V., Thang D.V.
Center for Nano Science and Technology, Hanoi National University of Education, 136 Xuan-Thuy Road, Hanoi, Viet Nam

Abstract: Multiferroic Bi$_{1-x}$Y$_x$FeO$_3$ (x = 0.00, 0.05, 0.1, 0.15, 0.2) ceramics were prepared by conventional solid-state-reaction method. X-ray diffraction measurement was carried out to characterize the crystal structure and to detect the impurities existing in these ceramics. The substitution of rare earth Y for Bi was found to decrease the impurity phase in BiFeO$_3$ ceramics. There is strong evidence that both lattice constants a and c of the unit cell unusually change at Y content of about x = 0.10. The effect of introducing Y$^{3+}$ is shown to increase the optical band gap for doped sample Bi$_{1-x}$Y$_x$FeO$_3$. Additionally, the Raman measurement performed for the lattice dynamics study of Bi$_{1-x}$Y$_x$FeO$_3$ samples reveals a strong band centered at around 1150-1350 cm$^{-1}$ which is associated with the resonant enhancement of two-phonon Raman scattering in the multiferroic Bi$_{1-x}$Y$_x$FeO$_3$ samples. The impedance spectroscopy indicates that, the Y dopant has improved the grain impedance. The enhancement of magnetization was observed in Y-doped samples compared to pure BiFeO$_3$. © 2010 Elsevier B.V. All rights reserved.

Author Keywords: Magnetization; Multiferroics; Raman spectroscopy

Index Keywords: Dopant effects; Doped sample; Electromagnetic properties; Impedance spectroscopy; Impurity phase; Lattice dynamics; Multiferroics; Raman measurements; Resonant enhancements; Unit cells; X-ray diffraction measurements; Y dopants; Y-doped; Ceramic materials; Crystal impurities; Crystal structure; Doping (additives); Lattice constants; Magnetization; Raman scattering; Raman spectroscopy; Solids; X ray diffraction; Iron oxides

Year: 2010
Source title: Journal of Alloys and Compounds
Volume: 505
Issue: 2
Page : 619-622
Link: Scopus Link
Correspondence Address: Minh, N. V.; Center for Nano Science and Technology, Hanoi National University of Education, 136 Xuan-Thuy Road, Hanoi, Viet Nam; email: minhsp@gmail.com
ISSN: 9258388
CODEN: JALCE
DOI: 10.1016/j.jallcom.2010.06.093
Language of Original Document: English
Abbreviated Source Title: Journal of Alloys and Compounds
Document Type: Article
Source: Scopus
Authors with affiliations:

• Minh, N.V., Center for Nano Science and Technology, Hanoi National University of Education, 136 Xuan-Thuy Road, Hanoi, Viet Nam
• Thang, D.V., Center for Nano Science and Technology, Hanoi National University of Education, 136 Xuan-Thuy Road, Hanoi, Viet Nam

References:

 John Wiley & Sons, Inc

Download: 0112.pdf