Exposure, metabolism, and health effects of arsenic in residents from arsenic-contaminated groundwater areas of Vietnam and Cambodia: A review


Dept of Legal Medicine, Shimane University Faculty of Medicine, humo, Japan; Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan; Dept of Environmental Sciences, Faculty of Science, Shinshu University, Matsumoto, Japan; National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan; Center for Environmental Technol and Sustainable Development, Hanoi University of Science, Hanoi, Viet Nam; Dept of Life Environmental Conservation, Faculty of Agriculture, Ehime University, Matsuyama, Japan; Inland Fisheries Research and Development Institute, Dept of Fisheries, Phnom Penh, Cambodia; Research Institute for BioTechnol and Environment, Nong Lam University, ThuDuc District, Ho Chi Minh City, Viet Nam; Social and Cultural Observation Unit, Office of the Council of Ministers, Phnom Penh, Cambodia

Abstract: In this review, we summarize the current knowledge on exposure, metabolism, and health effects of arsenic (As) in residents from As-contaminated groundwater areas of Vietnam and Cambodia based on our findings from 2000 and other studies. The health effects of As in humans include severe gastrointestinal disorders, hepatic and renal failure, cardiovascular disturbances, skin pigmentation, hyperkeratosis, and cancers in the lung, bladder, liver, kidney, and skin. Arsenic contamination in groundwater is widely present at Vietnam and Cambodia and the highest As levels are frequently found in groundwater from Cambodia. Sand filter system can reduce As concentration in raw groundwater. The results of hair and urine analyses indicate that residents from these As-contaminated areas are exposed to As. In general, sex, age, body mass index, and As exposure level are significantly associated with As metabolism. Genetic polymorphisms in arsenic (+III) methyltransferase and glutathione-5-transferase isoforms may be influenced As metabolism and accumulation in a Vietnamese population. It is suggested oxidative DNA damage is caused by exposure to As in groundwater from residents in Cambodia. An epidemiologic study on an association of As exposure with human health effects is required in these areas. © 2010 Freund Publishing House Limited.

Author Keywords: Arsenic; Cambodia; Groundwater; Human; Vietnam

Year: 2010
Source title: Reviews on Environmental Health
Volume: 25
Issue: 3
Page : 193-220
Link: Scopus Link

Correspondence Address: Tanabe, S.; Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan; email: shinsuke@agr.ehime-u.ac.jp
ISSN: 487554
Agusa, T., Dept of Legal Medicine, Shimane University Faculty of Medicine, humo, Japan, Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan

Kunito, T., Dept of Environmental Sciences, Faculty of Science, Shinshu University, Matsumoto, Japan

Kubota, R., National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan

Inoue, S., Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan

Fujihara, J., Dept of Legal Medicine, Shimane University Faculty of Medicine, humo, Japan

Minh, T.B., Center for Environmental Technol and Sustainable Development, Hanoi University of Science, Hanoi, Viet Nam

Ha, N.N., Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan

Tu, N.P.C., Dept of Life Environmental Conservation, Faculty of Agriculture, Ehime University, Matsuyama, Japan

Trang, P.T.K., Center for Environmental Technol and Sustainable Development, Hanoi University of Science, Hanoi, Viet Nam

Chamman, C., Inland Fisheries Research and Development Institute, Dept of Fisheries, Phnom Penh, Cambodia

Takeshita, H., Dept of Legal Medicine, Shimane University Faculty of Medicine, humo, Japan

Iwata, H., Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan

Tuyen, B.C., Research Institute for BioTechnol and Environment, Nong Lam University, ThuDuc District, Ho Chi Minh City, Viet Nam

Viet, P.H., Center for Environmental Technol and Sustainable Development, Hanoi University of Science, Hanoi, Viet Nam

Tana, T.S., Social and Cultural Observation Unit, Office of the Council of Ministers, Phnom Penh, Cambodia

Tanabe, S., Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan

References:


Berg, M., Luzi, S., Trang, P.T.K., Viet, P.H., Giger, W., Stuiblen, D., Arsenic removal from groundwater by household sand


• Luu, T.T.G., Sthiannopkao, S., Kim, K.W., Arsenic and other trace elements contamination in groundwater and a risk assessment study for the residents in the Kandal Province of Cambodia (2009) Environ Int, 35 (3), pp. 455-460


• Agusa, T., Kunito, T., Minh, T.B., Trang, P.T.K., Iwata, H., Viet, P.H., Relationship of urinary arsenic metabolites to intake


Evaluation of ce


Vahter, M., Methylation of inorganic arsenic in different mammalian species and population groups (1999) Sci Prog, 82


• Watanabe, C., Inaoka, T., Kadono, T., Nagano, M., Nakamura, S., Ushijima, K., Murayama, N., Ohtsuka, R., Males in rural Bangladeshi communities are more susceptible to chronic arsenic poisoning than females: Analyses based on urinary arsenic (2001) Environmental Health Perspectives, 109 (12), pp. 1265-1270


• Kasai, H., Analysis of a form of oxidative DNA damage, 8-hydroxy-2'-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis (1997) Mutat Res, 387 (3), pp. 147-163


• http://www.patient.co.uk/doctor/Arsenic-Poisoning.htm


• Stanger, G., A palaeo-hydrogeological model for arsenic contamination in southern and south-east Asia (2005) Environ

