Abstract: P was doped into ZnO in two forms: ceramics; and nano-wires fabricated by thermal evaporation technique. When P concentration is below 6%, the compounds could be p-type with the hole concentration is of about $10^{18}/\text{cm}^3$. However, this property could be lost after few weeks due to aging effect. When the P concentration is above 9%, peaks of P appear clearly in the X-ray spectra, and simultaneously, the compounds are found to be n-type. The size of grains in ceramic samples strongly depends on deposition conditions. As for wires, changing the substrate temperature and the pressure of gas flow could vary the size. The smallest size of P-doped ZnO wires that could be obtained is about 10 nm for the composition of doping with 3% of P. © 2010 Elsevier B.V. All rights reserved.

Author Keywords: Doping; Nanomaterials; Semiconductors; Structure

Year: 2011
Source title: Materials Chemistry and Physics
Volume: 126
Issue: 2-Jan
Page : 54-57
Link: Scopus Link
Correspondence Address: Hong, N. H.; Department of Physics and Astronomy, Seoul National University, Seoul 151-747, South Korea; email: nguyenhong@snu.ac.kr
ISSN: 2540584
CODEN: MCHPD
DOI: 10.1016/j.matchemphys.2010.12.012
Language of Original Document: English
Abbreviated Source Title: Materials Chemistry and Physics
Document Type: Article
Source: Scopus
Authors with affiliations:
- Huong, N.T., Faculty of Physics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
- Tuyen, N.V., Faculty of Physics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
- Hong, N.H., Department of Physics and Astronomy, Seoul National University, Seoul 151-747, South Korea

References:

Download: 0003.pdf