On a class of degenerate and singular elliptic systems in bounded domains

Chung N.T., Toan H.Q.
Department of Mathematics and Informatics, Quang Binh University, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Viet Nam; Department of Mathematics, Hanoi University of Science, 334 Nguyen Trai, Hanoi, Viet Nam

Abstract: This paper deals with the nonexistence and multiplicity of nonnegative, nontrivial solutions to a class of degenerate and singular elliptic systems of the form
\[\begin{align*}
\text{(- div (} h_1 (x) u) &= \lambda F_u (x, u, v), \text{ in } \Omega; \\
\text{- div (} h_2 (x) v) &= \lambda F_v (x, u, v), \text{ in } \Omega,)
\end{align*} \]
where \(\Omega \) is a bounded domain with smooth boundary \(\partial \Omega \) in \(\mathbb{R}^N \), \(N \geq 2 \), and \(h_1, h_2 : \Omega \to [0, \infty) \), \(h_i \in L^1_{\text{loc}} (\Omega) \), \(i = 1, 2 \) are allowed to have "essential" zeroes at some points in \(\Omega \), \((F_u, F_v) = F \), and \(\lambda \) is a positive parameter. Our proofs rely essentially on the critical point theory tools combined with a variant of the Caffarelli-Kohn-Nirenberg inequality in [P. Caldiroli, R. Musina, On a variational degenerate elliptic problem, NoDEA Nonlinear Differential Equations Appl. 7 (2000) 189-199]. © 2009 Elsevier Inc. All rights reserved.

Author Keywords: Degenerate; Minimum principle; Mountain pass theorem;Multiplicity; Nonexistence; Semilinear elliptic systems; Singular

Year: 2009
Source title: Journal of Mathematical Analysis and Applications
Volume: 360
Issue: 2
Page : 422-431
Cited by: 1
Link: Scopus Link

Correspondence Address: Chung, N.T.; Department of Mathematics and Informatics, Quang Binh University, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Viet Nam; email: ntchung82@yahoo.com

ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2009.06.073

Language of Original Document: English
Abbreviated Source Title: Journal of Mathematical Analysis and Applications

Document Type: Article
Source: Scopus

Authors with affiliations:
• Chung, N.T., Department of Mathematics and Informatics, Quang Binh University, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Viet Nam
• Toan, H.Q., Department of Mathematics, Hanoi University of Science, 334 Nguyen Trai, Hanoi, Viet Nam

References:
• Ambrosetti, A., Rabinowitz, P.H., Dual variational methods in critical points theory and applications (1973) J. Funct. Anal., 4,
pp. 349-381