The existence of large magnetocaloric effect at low field variation and the anti-corrosion ability of Fe-rich alloy with Cr substituted for Fe

Hong Gam D.T., Hai N.H., Vu L.V., Luong N.H., Chau N.
Center for Materials Science, University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Viet Nam

Abstract: The influence of Cr substituted for Fe in Fe$_{78-x}$Cr$_x$Si$_4$Nb$_5$B$_{12}$Ag$_1$ ribbons on the crystallization and magnetic properties including the magnetocaloric effect have been investigated. DSC measurements showed that the crystallization temperature and the crystallization activation energy increased with Cr content. Thermomagnetic curves measured in low applied field indicated that there is a sharp ferromagnetic-paramagnetic phase transition at Curie temperature, T$_C$, of the amorphous phase. In addition, substitution of Cr for Fe led to approximate linear decrease of T$_C$ with Cr content, namely from 450K to 280K for x 0 and x 8, respectively. From a series of the isothermal magnetization curves M(H) measured at different temperatures, magnetic entropy change ΔS_m was determined at magnetic field variations of 13.5, 10.0 and 5.0 kOe. Maximum value of ΔS_m (occurred near T$_C$) decreased with increasing Cr content and these values established are quite large at low field variation. Namely, at moderate low magnetic field variation of 5.0 kOe, $|\Delta S_m|_{\text{max}}$ is of 4.4 and 1.9 J/kg.K for x 0 and x 8, respectively. Our studied alloys system could be considered as the best magnetocaloric material candidates for magnetic refrigeration because of colossal magnetic entropy change at low field variation and working temperature could be controlled in large region by substitution effect. The anti-corrosion ability of alloys was also examined. © 2009 IOP Publishing Ltd.

Year: 2009
Source title: Journal of Physics: Conference Series
Volume: 187
Art. No.: 12067
Link: Scopus Link
Correspondence Address: Hong Gam, D. T.; Center for Materials Science, University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Viet Nam; email: gamcms@gmail.com
ISSN: 17426588
DOI: 10.1088/1742-6596/187/1/012067
Language of Original Document: English
Abbreviated Source Title: Journal of Physics: Conference Series
Document Type: Conference Paper
Source: Scopus
Authors with affiliations:
- Hong Gam, D.T., Center for Materials Science, University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Viet Nam
- Hai, N.H., Center for Materials Science, University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Viet Nam
References:

