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Abstract: We investigate a problem of approximate non-linear sampling recovery of functions on the interval
[:=[0,1] expressing the adaptive choice of n sampled values of a function to be recovered, and of n terms
from a given family of functions ®. More precisely, for each function f on I, we choose a sequence & = {ﬁs}
S :ln of n points in I, a sequence a = {aS}S:1 }n of n functions defined on " and a sequence CDn = {Vks} =1
% of n functions from a given family ®. By this choice we define a (non-linear) sampling recovery method
so that f'is approximately recovered from the n sampled values f(§ 1), f(§ 7),..., f(§ n ), by the n-term linear
combination S(f) = S(&, (D ,a,f):= Zszlna S(f(él),...,f(én))\/ {k }. In searching an optimal sampling method,
we study the quantlty v (f (D) = {CD , al, HF S(E, CD , a, f)H where the infimum is taken over all
sequences & = {e‘; }S 1 ofn pomts a= {as}S M ofn functlons deﬁned on", and ®n = {Vks} }S ln of n
functions from ®@. Let U% 0 be the unit ball in the Besov space BY e} and M the set of centered B-spline
wavelets M (x) N (2k X + p - s), which do not vanish 1dentlcally on I, where N 1s the B-spline of even
order r > [a] + 1 w1th knots at the points 0,1,...,r. For 1 <p,q<o0,0<0 <o and a > 1, we proved the

following asymptotic order v (U (f M) = sup fooU o p,0 oy (f, M) n~ % An asymptotically optimal

p.0” *y

non-linear sampling recovery method S for oy (U (f M) is constructed by using a quasi-interpolant

wavelet representation of functions in the Besov spzﬁ:g in terms of the B-splines M k.s and the associated
equivalent discrete quasi-norm of the Besov space. For 1 < p < q < o the asymptotic order of this
asymptotically optimal sampling non-linear recovery method is better than the asymptotic order of any
linear sampling recovery method or, more generally, of any non-linear sampling recovery method of the
form R(H,E): = H(FE 1).....f(E ™)) with a fixed mapping H:" to C(T) and n fixed points & = {£5} s=1n' ©
2008 Springer Science+Business Media, LLC.
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