Abstract: We present an approach to find upper bounds of heap space for Java Card applets. Our method first transforms an input bytecode stream into a control flow graph (CFG), and then collapses cycles of the CFG to produce a directed acyclic graph (DAG). Based on the DAG, we propose a linear-time algorithm to solve the problem of finding the single-source largest path in it. We also have implemented a prototype tool, tested it on several sample applications, and then compared the bounds found by our tool with the actual heap bounds of the programs. The experiment shows that our tool returns good estimation of heap bounds, runs fast, and has a small memory footprint. © 2008 IEEE.

Index Keywords: Clustering algorithms; Computer programming languages; Computer software; Java programming language; Software engineering; Applets; Control Flow graphs; Directed Acyclic graphs; Fast algorithms; Prototype tools; Small memory footprints; Time algorithms; Upper bounds; Formal methods

Year: 2008
Art. No.: 4685813
Page : 259-267
Link: Scopus Link

Correspondence Address: Pham, T.-H.; College of Technology, Vietnam National University, 144 Xuan Thuy, Hanoi, Viet Nam


Conference name: 6th IEEE International Conference on Software Engineering and Formal Methods, SEFM 2008
Conference date: 10 November 2008 through 14 November 2008
Conference location: Cape Town
Conference code: 74875
DOI: 10.1109/SEFM.2008.30

Language of Original Document: English

Abbreviated Source Title: Proceedings - 6th IEEE International Conference on Software Engineering and Formal Methods, SEFM 2008

Document Type: Conference Paper
Source: Scopus
Authors with affiliations:
Pham, T.-H., College of Technology, Vietnam National University, 144 Xuan Thuy, Hanoi, Viet Nam
Truong, A.-H., College of Technology, Vietnam National University, 144 Xuan Thuy, Hanoi, Viet Nam
Truong, N.-T., College of Technology, Vietnam National University, 144 Xuan Thuy, Hanoi, Viet Nam
Chin, W.-N., School of Computing, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore

References:
