Mechanism for sustainable magnetic nanoparticles under ambient conditions

Hai N.H., Phu N.D., Luong N.H., Chau N., Chinh H.D., Hoang L.H., Leslie-Pelecky D.L.
Center for Materials Science, Hanoi University of Science, 334 Nguyen Trai, Hanoi, Viet Nam; Faculty of Inorganic Chemistry, Hanoi University of Technology, 1 Dai Co Viet, Hanoi, Viet Nam; Faculty of Physics, Hanoi University of Education, 136 Xuan Thuy, Hanoi, Viet Nam; Department of Physics and Astronomy, Center for Materials Research and Analysis, University of Nebraska, Lincoln, NE 68588-0111, United States

Abstract: Iron-based magnetic fluids are widely used in physical applications. Recently, they have been extended to many biological applications due to their magnetic and biocompatible properties. However, their stability under an ambient environment still has not been systematically investigated. In this report, we present the oxidation process of magnetic fluids. The oxidation process depends on the materials that make the nanoparticles, the diffusion of oxygen atoms from the environment to the magnetic nanoparticles, which mainly depends on the viscosity of the solution and the surfactant that coats the nanoparticles. We suggest three ways to protect nanoparticles from oxidation: (a) using highly viscous carrier liquid (b) using relevant surfactants and (c) substitution of Ni$^{2+}$ and Co$^{2+}$ for Fe$^{2+}$ in magnetite. Methods (a) and (b) are general, so they can be applied for many environmentally sensitive magnetic fluids. Method (c) is specific for a magnetite fluid.

Author Keywords: Biophysics; Ferrites; Magnetic fluids; Nanoparticles; Oxidation resistance

Year: 2008
Source title: Journal of the Korean Physical Society
Volume: 52
Issue: 5
Page : 1327-1331
Cited by: 3
Link: Scopus Link
Correspondence Address: Hai, N. H.; Center for Materials Science, Hanoi University of Science, 334 Nguyen Trai, Hanoi, Viet Nam; email: nhhai@vnu.edu.vn
ISSN: 3744884
Language of Original Document: English
Abbreviated Source Title: Journal of the Korean Physical Society
Document Type: Article
Source: Scopus
Authors with affiliations:
• Hai, N.H., Center for Materials Science, Hanoi University of Science, 334 Nguyen Trai, Hanoi, Viet Nam
• Phu, N.D., Center for Materials Science, Hanoi University of Science, 334 Nguyen Trai, Hanoi, Viet Nam
• Luong, N.H., Center for Materials Science, Hanoi University of Science, 334 Nguyen Trai, Hanoi, Viet Nam
References: