Magnetoelastic properties of nanostructured FeCoSiB ribbons used for high-sensitive stress sensors

Thang P.D., Huong Giang D.T., Tinh B.C., Danh T.M., Tuan N.H., Duc N.H.
Department of Nano Magnetic Materials and Devices, College of Technology, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi, Viet Nam

Abstract: High-sensitive stress sensor is simply constructed comprising magnetostrictive 30 μm-thick (Fe$_{80}$Co$_{20}$)$_{78}$Si$_{12}$B$_{10}$ ribbon acting as a sensitive magnetic core inside an induction coil. The stress can be determined indirectly by measuring the change in the output voltage in the two-coil system. The results show that the sensitivity highly depends on the intrinsic properties of the ribbon cores. The optimum with both a high sensitivity and an almost linear stress dependence of output signal was obtained in the 250°C-annealed ribbon. This is attributed to the correlation between the magnetic and magnetoelastic softness governed by the fine 10 nm nanogram structure. These high sensitivity and simple fabrication sensors are widely applicable to various stress detecting fields. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA.

Index Keywords: FeCoSiB ribbons; High-sensitive stress sensors; Nanogram structure; Annealing; Electric potential; Iron alloys; Magnetic cores; Nanostructured materials

Year: 2007
Volume: 4
Issue: 12
Page : 4585-4588
Cited by: 1
Link: Scopus Link
Correspondence Address: Thang, P.D.; Department of Nano Magnetic Materials and Devices, College of Technology, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi, Viet Nam; email: pdthang@vnu.edu.vn
Conference date: 28 May 2007 through 1 June 2007
Conference location: Jeju
Conference code: 71180
ISSN: 18626351
DOI: 10.1002/pssc.200777203
Language of Original Document: English
Abbreviated Source Title: Physica Status Solidi (C) Current Topics in Solid State Physics
Document Type: Conference Paper
Source: Scopus
Authors with affiliations:
References: