Scale-domain equalizer for wavelet-based ADSL

Tuan Nguyen Q., Thong Nguyen D.
Vietnam National University of Hanoi; University of Technology Sydney

Abstract: Current opinions vary on the question of suitability of wavelet-based multi-carrier modulation (MCM) systems for communication through dispersive time invariant channels such as digital subscriber line (DSL) and wireless communication environments. This is because there has not been sufficient work done on the analysis and improvement techniques for wavelet-based MCM systems. In this paper we propose a wavelet-based MCM scheme as an alternative to the current FFT-based system for use in an asymmetrical digital subscriber line (ADSL) and present analytical and simulation results showing improvements from the use of one-tap equalizers in the scale domain. © 2006 IEEE.

Index Keywords: Channel capacity; Computer simulation; Fast Fourier transforms; Multicarrier modulation; Wavelet analysis; Wireless telecommunication systems; Asymmetrical digital subscriber line (ADSL); Digital subscriber line (DSL); Multi-carrier modulation (MCM); Modems

Year: 2007
Source title: IEEE Region 10 Annual International Conference, Proceedings/TENCON
Art. No.: 4142129
Link: Scopus Link
Correspondence Address: Tuan Nguyen, Q.; Vietnam National University of Hanoiemail: tuannq@vnu.edu.vn
Conference name: 2006 IEEE Region 10 Conference, TENCON 2006
Conference date: 14 November 2006 through 17 November 2006
Conference location: Hong Kong
Conference code: 70043
ISBN: 1424405491; 9781424405497
CODEN: 85QXA
DOI: 10.1109/TENCON.2006.343844
Language of Original Document: English
Abbreviated Source Title: IEEE Region 10 Annual International Conference, Proceedings/TENCON
Document Type: Conference Paper
Source: Scopus
Authors with affiliations:
• Tuan Nguyen, Q., Vietnam National University of Hanoi
• Thong Nguyen, D., University of Technology Sydney

References:
• ITU-T Rec.G.992.2 (06/99), Series G, Splitterless asymmetric digital subscriber line (ADSL) transceiversDAUBECHIES, I.,
Ten Lectures on Wavelets (1992) CBMS-NSF Lecture Notes, 61., Nr, SIAM, Philadelphia

- Neurohr, N., Discrete Wavelet Multitone Transmission for Digital Subscriber Lines Institute of Communications Engineering, Department of Electrical Engineering and Computer Engineering University of Kaiserslautern, Telekommunikations Forum, WS2000
- Charina, M., ISI/ICI Comparison of DMT and Wavelet-Based MCM schemes for Time Invariant Channels