Random tree-puzzle leads to the yule-harding distribution

Vinh L.S., Fuehrer A., Von Haeseler A.
Computer Science Department, University of Engineering and Technology, Vietnam National University
Hanoi, Cau Giay, Hanoi, Viet Nam; Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria

Abstract: Approaches to reconstruct phylogenies abound and are widely used in the study of molecular evolution. Partially through extensive simulations, we are beginning to understand the potential pitfalls as well as the advantages of different methods. However, little work has been done on possible biases introduced by the methods if the input data are random and do not carry any phylogenetic signal. Although Tree-Puzzle (Strimmer K, von Haeseler A. 1996. Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol. 13:964-969; Schmidt HA, Strimmer K, Vingron M, von Haeseler A. 2002. Tree-Puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502-504) has become common in phylogenetics, the resulting distribution of labeled unrooted bifurcating trees when data do not carry any phylogenetic signal has not been investigated. Our note shows that the distribution converges to the well-known Yule-Harding distribution. However, the bias of the Yule-Harding distribution will be diminished by a tiny amount of phylogenetic information.

maximum likelihood, phylogenetic reconstruction, Tree-Puzzle, tree distribution, Yule-Harding distribution.

© 2010 The Author.
Author Keywords: maximumlikelihood; phylogenetic reconstruction; tree distribution; Tree-Puzzle; Yule-Harding distribution

Year: 2011
Source title: Molecular Biology and Evolution
Volume: 28
Issue: 2
Page : 873-877
Link: Scopus Link
Correspondence Address: Von Haeseler, A.; Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria; email: arndt.von.haeseler@univie.ac.at
ISSN: 7374038
CODEN: MBEVE
DOI: 10.1093/molbev/msq212
Language of Original Document: English
Abbreviated Source Title: Molecular Biology and Evolution
Document Type: Article
Source: Scopus
Authors with affiliations:
• Vinh, L.S., Computer Science Department, University of Engineering and Technology, Vietnam National University Hanoi, Cau
References:

- Kupczok, A., Consequences of different null models on the tree shape bias of supertree methods (2009) Syst Biol, , Submitted