Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment

Takeuchi Y., Du N.H., Hieu N.T., Sato K.
Department of Systems Engineering, Shizuoka University, Hamamatsu, 432-8561, Japan; Faculty of Mathematics, Mechanics and Informatics, Hanoi National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam

Abstract: In this paper, we consider the evolution of a system composed of two predator-prey deterministic systems described by Lotka-Volterra equations in random environment. It is proved that under the influence of telegraph noise, all positive trajectories of such a system always go out from any compact set of int \(R_+^2 \) with probability one if two rest points of the two systems do not coincide. In case where they have the rest point in common, the trajectory either leaves from any compact set of int \(R_+^2 \) or converges to the rest point. The escape of the trajectories from any compact set means that the system is neither permanent nor dissipative. © 2005 Elsevier Inc. All rights reserved.

Author Keywords: Lotka-Volterra equation; Predator-prey model; Telegraph noise

Year: 2006
Source title: Journal of Mathematical Analysis and Applications
Volume: 323
Issue: 2
Page: 938-957
Cited by: 11
Link: Scopus Link
Correspondence Address: Takeuchi, Y.; Department of Systems Engineering, Shizuoka University, Hamamatsu, 432-8561, Japan; email: takeuchi@sys.eng.shizuoka.ac.jp
ISSN: 0022247X
DOI: 10.1016/j.jmaa.2005.11.009
Language of Original Document: English
Abbreviated Source Title: Journal of Mathematical Analysis and Applications
Document Type: Article
Source: Scopus
Authors with affiliations:
• Takeuchi, Y., Department of Systems Engineering, Shizuoka University, Hamamatsu, 432-8561, Japan
• Du, N.H., Faculty of Mathematics, Mechanics and Informatics, Hanoi National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
• Hieu, N.T., Faculty of Mathematics, Mechanics and Informatics, Hanoi National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
• Sato, K., Department of Systems Engineering, Shizuoka University, Hamamatsu, 432-8561, Japan
References:
• Gilpin, M.E., (1975) Predator-Prey Communities, , Princeton Univ. Press