Nanosized magnetofluorescent Fe₃O₄-curcumin conjugate for multimodal monitoring and drug targeting

Tran L.D., Hoang N.M.T., Mai T.T., Tran H.V., Nguyen N.T., Tran T.D., Do M.H., Nguyen Q.T., Pham D.G., Ha T.P., Le H.V., Nguyen P.X.

Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam; Faculty of Biology, Hanoi University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Viet Nam; Faculty of Chemical Technology, Hanoi University of Technology, 1 Dai Co Viet, Hanoi, Viet Nam; Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam

Abstract: Magnetic drug targeting, the targeting of a drug conjugated with a magnetic material under the action of external magnetic field constitutes an important drug delivery system. This paper describes the strategy to design a multifunctional, nanosized magnetofluorescent water-dispersible Fe₃O₄-curcumin conjugate and its multiple ability to label, target and treat the tumor cells. The conjugate possesses magnetic nano Fe₃O₄ core, chitosan (CS) or oleic acid (OL) as outer shell and entrapped curcumin (Cur), serving dual function of naturally autofluorescent dye as well as anti-tumor model drug, delivered to the cells with the help of macrophage (Cur possesses anti-oxidant, anti-inflammatory and anti-tumor ability). Fe₃O₄-Cur conjugate exhibited a high loading cellular uptake which was clearly visualized dually by Fluorescence Microscope, Laser scanning confocal microscope (LSCM) as well as magnetization measurement (Physical properties measurement systems, PPMS). Preliminary magnetic resonance imaging (MRI) study also showed a clear contrast enhancement by using Fe₃O₄-Cur conjugate. © 2010 Elsevier B.V.

Author Keywords: Chitosan (CS); Curcumin (Cur); Laser scanning confocal microscope (LSCM); Macrophages; Magnetofluorescent Fe₃O₄; Oleic acid (OL); Physical properties measurement systems (PPMS)

Index Keywords: Anti-inflammatories; Anti-oxidants; Anti-tumors; Cellular uptake; Contrast Enhancement; Curcumin; Drug delivery system; Drug-targeting; Dual function; External magnetic field; Fluorescence microscopes; High loadings; Laser scanning confocal microscope (LSCM); Laser scanning confocal microscopes; Magnetic drug targeting; Magnetization measurements; Magnetofluorescent FeO; Multimodal; Nano-Fe; Nano-sized; Outer shells; Physical properties measurement systems (PPMS); Physical-properties measurement systems; Tumor cells; Water dispersible; Chitin; Chitosan; Drug delivery; Laser applications; Macrophages; Magnetic fields; Magnetic materials; Measurements; Microscopes; Oleic acid; Physical properties; Resonance; Scanning; Tumors; Magnetic resonance imaging; chitosan; curcumin; fluorescent dye; magnetic nanoparticle; magnetite; magnetite curcumin; oleic acid; unclassified drug; water; animal cell; animal experiment; animal model; article; autofluorescence; cell labeling; confocal laser microscopy; contrast enhancement; controlled study; dispersion; drug conjugation; drug delivery system; drug targeting; drug transport; fluorescence microscopy; macrophage; magnetism; monocyte; mouse; nonhuman; nuclear magnetic resonance imaging; particle size; phagocytosis; priority journal; target cell; tumor cell
Chemicals/CAS: chitosan, 9012-76-4; curcumin, 458-37-7; magnetite, 1309-38-2, 1317-61-9; oleic acid, 112-80-1, 115-06-0; water, 7732-18-5
Manufacturers: institute of chemistry, Viet Nam
Correspondence Address: Tran, L.D.; Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam; email: lamtd@ims.vast.ac.vn
ISSN: 9277757
CODEN: CPEAE
DOI: 10.1016/j.colsurfa.2010.09.011
Language of Original Document: English
Abbreviated Source Title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Document Type: Article
Source: Scopus
Authors with affiliations:
- Tran, L.D., Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
- Hoang, N.M.T., Faculty of Biology, Hanoi University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Viet Nam
- Mai, T.T., Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
- Tran, H.V., Faculty of Chemical Technology, Hanoi University of Technology, 1 Dai Co Viet, Hanoi, Viet Nam
- Nguyen, N.T., Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
- Tran, T.D., Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
- Do, M.H., Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
- Nguyen, Q.T., Faculty of Biology, Hanoi University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Viet Nam
- Pham, D.G., Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
- Ha, T.P., Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
- Le, H.V., Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
- Nguyen, P.X., Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam

References:
- Kumar, A., Jena, P.K., Behera, S., Lockey, R.F., Mohapatra, S., Mohapatra, S., Multifunctional magnetic nanoparticles for targeted delivery, nanomedicine, nanotechnology (2010) Biology and Medicine, 6, pp. 64-69


• Rheinlander, T., Kotitz, R., Weitschies, W., Semmler, W., Different methods for the fractionation of magnetic fluids (2000) Colloid & Polymer Science, 278, pp. 259-263


• Kim, J.G., Keshava, C., Murphy, A.A., Pitas, R.E., Parthasarathy, S., Fresh mouse peritoneal macrophages have low scavenger receptor activity (1997) Journal of Lipid Research, 38, pp. 2207-2215


Anitha, A., Maya, S., Deepa, N., Chennazhi, K.P., Nair, S.V., Tamura, H., Jayakumar, R., doi:10.1016/j.carbpol.2010.08.008, Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells, Carbohydrate Polymers, in press, Accepted Manuscript


Download: 0074.pdf