Silicon oxide formation for TFTs using humid ozone-enriched gas ambient at low temperature

Hai P.N., Nishio S., Horita S.
Japan Adv. Inst. Sci. and Technol., 1-1, Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan; Faculty of Physics, Hanoi University of Science, 334 Nguyen Trai, Hanoi, Viet Nam

Abstract: Humid ozone-enriched ambient, created by bubbling (O₃+O₂) gas in H₂O₂ or H₂O, enhanced the silicon oxide growth on the Si substrate at 250°C. The film thickness was controllable with the high growth rate of 1.4 Å/min. The XPS data show that the oxide layer on Si(111) has the same transition layer structure as the thermal SiO₂ film. By combination with the short-time treatment at higher temperature (below 500°C), the electrical characteristics of SiO₂ thin films were improved. The operation of polycrystalline Si thin film transistors using this oxide film indicates that the new growth method is applicable for low-temperature device fabrications. © 2004 IEEE.

Index Keywords: Electric fields; Fourier transform infrared spectroscopy; Heating; MOS capacitors; Oxidation; Plasma enhanced chemical vapor deposition; Polycrystalline materials; Quartz; Silica; Ultraviolet radiation; Display-device technologies; Light irradiation; Ozone-enriched gas; Ozone-enriched oxidation; Thin film transistors

Year: 2004
Source title: ESSCIRC 2004 - Proceedings of the 34th European Solid-State Device Research Conference
Page: 313-316
Link: Scopus Link
Correspondence Address: Hai, P.N.; Japan Adv. Inst. Sci. and Technol., 1-1, Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan; email: pnhai@jaist.ac.jp
Editors: Mertens R.P.Claeys C.L.
Sponsors: AMI Semiconductor; Chipidea Microelectronica, S.A.; LEA; Philips; STMicroelectronica
Conference name: ESSCIRC 2004 - Proceedings of the 34th European Solid-State Device Research Conference
Conference date: 21 September 2004 through 23 September 2004
Conference location: Leuven
Conference code: 64646
ISBN: 780384784
Language of Original Document: English
Abbreviated Source Title: ESSCIRC 2004 - Proceedings of the 34th European Solid-State Device Research Conference
Document Type: Conference Paper
Source: Scopus
Authors with affiliations:
• Hai, P.N., Japan Adv. Inst. Sci. and Technol., 1-1, Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan, Faculty of Physics,
References: