Invariant manifolds of partial functional differential equations

Van Minh N., Wu J.

Department of Mathematics, Hanoi University of Science, Khoa Toan, DH Khoa Hoc Tu Nhien, 334 Nguyen Trai, Hanoi, Viet Nam; Department of Mathematics/Statistics, York University, Toronto, Ont. M3J 1P3, Canada; Dept. of Mathematics/Statistics, James Madison University, Harrisonburg, MD, United States

Abstract: This paper is concerned with the existence, smoothness and attractivity of invariant manifolds for evolutionary processes on general Banach spaces when the nonlinear perturbation has a small global Lipschitz constant and locally C^k-smooth near the trivial solution. Such a nonlinear perturbation arises in many applications through the usual cut-off procedure, but the requirement in the existing literature that the nonlinear perturbation is globally C^k-smooth and has a globally small Lipschitz constant is hardly met in those systems for which the phase space does not allow a smooth cut-off function. Our general results are illustrated by and applied to partial functional differential equations for which the phase space $C([-r, 0], X)$ (where $r > 0$ and X being a Banach space) has no smooth inner product structure and for which the validity of variation-of-constants formula is still an interesting open problem. © 2003 Elsevier Inc. All rights reserved.

Author Keywords: Evolutionary process; Invariant manifold; Partial functional differential equation; Smoothness

Year: 2004
Source title: Journal of Differential Equations
Volume: 198
Issue: 2
Page: 381-421
Cited by: 5

Correspondence Address: Van Minh, N.; Dept. of Mathematics/Statistics, James Madison University, Harrisonburg, MD, United States; email: nguyenvm@jmu.edu

ISSN: 220396
CODEN: JDEQA
DOI: 10.1016/j.jde.2003.10.006

Language of Original Document: English
Abbreviated Source Title: Journal of Differential Equations
Document Type: Article
Source: Scopus

Authors with affiliations:
• Van Minh, N., Department of Mathematics, Hanoi University of Science, Khoa Toan, DH Khoa Hoc Tu Nhien, 334 Nguyen Trai, Hanoi, Viet Nam, Dept. of Mathematics/Statistics, James Madison University, Harrisonburg, MD, United States
• Wu, J., Department of Mathematics/Statistics, York University, Toronto, Ont. M3J 1P3, Canada

References:
• Chicone, C., Latushkin, Y., Center manifolds for infinite dimensional nonautonomous differential equations (1997) J. Differential Equations, 141, pp. 356-399
pp. 237-254

