Sediment deposition and production in SE-Asia seagrass meadows

Gacia E., Duarte C.M., Marba N., Terrados J., Kennedy H., Fortes M.D., Tri N.H.
Ctr. d'Estudis Avancats de Blanes, Apartat de correus 118, 17300 Blanes, Spain; Inst. Mediterraneo Estud. Avanzados, C/Miquel Marqués, 21, 07190-Esporles, Mallorca, Spain; Marine Science Laboratories, University of Wales, Bangor, Anglesey LL59 5EY, United Kingdom; Marine Science Institute, CS, University of the Philippines, Diliman, Quezon City 1101, Philippines; Mangrove Ecosystem Research Division, Ctr. for Nat. Rsrc./Environ. Studies, Vietnam National University, No. 7 Ngo 115 Nguyen Khuyen Street, Hanoi, Viet Nam

Abstract: Seagrass meadows play an important role in the trapping and binding of particles in coastal sediments. Yet seagrass may also contribute to sediment production directly, through the deposition of detritus and also the deposition of the associated mineral particles. This study aims at estimating the contribution of different seagrass species growing across an extensive range of deposition to inorganic (carbonate and non-carbonate) and organic sediment production. Total daily deposition measured with sediment traps varied from 18.8 (±2.0) g DW m⁻² d⁻¹ in Silaqui (Philippines) to 681.1 (±102) g DW m⁻² d⁻¹ in Bay Tien (Vietnam). These measurements correspond to a single sampling event and represent sedimentation conditions during the dry season in SE-Asia coastal areas. Enhalus acoroides was the most common species in the seagrass meadows visited and, together with Thalassia hemprichii, was present at sites from low to very high deposition. Halodule uninervis and Cymodocea species were present in sites from low to medium deposition. The mineral load in seagrass leaves increased with age, and was high in E. acoroides because it had the largest and long-lived leaves (up to 417 mg calcium carbonate per leaf and 507 mg non-carbonate minerals per leaf) and low in H. uninervis with short-lived leaves (4 mg calcium carbonate per leaf and 2 mg non-carbonate minerals per leaf). In SE-Asia seagrass meadows non-carbonate minerals accumulate at slower rates than the production of calcium carbonate by the epiphytic community, consequently the final loads supported by fully grown leaves were, as average, lower than calcium carbonate loads. Our results show that organic and inorganic production of the seagrasses in SE-Asia represents a small contribution (maximum of 15%) of the materials sedimented on a daily base by the water column during the sampling period. The contribution of the carbonate fraction can be locally significant (i.e. 34% in Silaqui) in areas where the depositional flux is low, but is minor (<1%) in sites were siltation is significant (i.e. Umalagan and all the visited sites in Vietnam). © 2003 Elsevier Science B.V. All rights reserved.

Author Keywords: Deposition; Leaf production; Seagrass; Sediment; Siltation
Index Keywords: coastal sediment; deposition; seagrass; sedimentation; siltation; Asia; Cymodocea; Enhalus acoroides; Halodule uninervis; Halophila; Thalassia hemprichii

Year: 2003
Source title: Estuarine, Coastal and Shelf Science
Volume: 56
Issue: 6-May
Page: 909-919
• Duarte, C.M., Temporal biomass variability and production biomass relationships of seagrass communities (1989) Marine Ecology Progress Series, 51, pp. 269-276
• Duarte, C.M., Chiscano, C.L., Seagrass biomass and production: A reassessment (1999) Aquatic Botany, 65, pp. 159-174
• Fonseca, M.S., Sediment stabilization by Halophila decipiens in comparison to other seagrasses (1989) Estuarine, Coastal and Shelf Science, 29, pp. 501-507
• Fortes, M.D., Mangrove and seagrass beds of East Asia: Habitats under stress (1988) Ambio, 17, pp. 207-213
• García, E., Duarte, C.M., Sediment retention by a Mediterranean Posidonia oceanica meadow: The balance between deposition and resuspension (2001) Estuarine, Coastal and Shelf Science, 52, pp. 505-514
• García, E., Granata, T.C., Duarte, C.M., An approach to the measurement of particle flux and sediment retention within seagrasses (Posidonia oceanica) meadows (1999) Aquatic Botany, 65, pp. 255-269
• Gambi, M.C., Nowell, A.R., Jumars, P.A., Flume observations on flow dynamics in Zostera marina (eelgrass) beds (1990) Marine Ecology Progress Series, 61, pp. 159-169
• Hatcher, A., Grant, J., Schofield, B., Effects of suspended mussel culture (Mytilus spp.) on sedimentation, benthic respiration and sediment nutrient dynamics in a coastal bay (1994) Marine Ecology Progress Series, 115, pp. 219-235
• Heijs, F.M.L., Production and biomass of the seagrass Enhalus acoroides (L.f.) Royle and its epiphytes (1987) Aquatic Botany, 25, pp. 21-45
• Nelsen, J.E., Ginsburg, R.N., Calcium carbonate production by epibionts on Thalassia in Florida Bay (1986) Journal of Sediment Petrology, 56, pp. 622-628
• Ott, B., Community patterns on a submerged barrier reef at Barbados, West Indies (1975) International Revue of Ges Hydrobiology, 60, pp. 719-736
• Patriquin, D.G., Carbonate mud production by epibionts on Thalassia: An estimate based on leaf growth rate data (1972) Journal of Sediment Petrology, 42, pp. 687-689
• Smetacek, V., Annual cycle of sedimentation in relation to plankton ecology in western Kiel Bight (1980) Ophelia, 1, pp. 65-76
• Verduin, J.J., Backhaus, J.O., Dynamics of plant-flow interactions for the seagrass Amphibolis antarctica: Field observations and model simulations (2000) Estuarine, Coastal and Shelf Science, 50, pp. 185-204
• Vermaat, J.E., Agawin, N.S., Fortes, M.D., Uri, J., Duarte, C.M., Marbá, N., Van Vierssen, W., The capacity of seagrass to survive increased turbidity and siltation: The significance of growth form and light use (1997) Ambio, 26, pp. 499-504
• Walker, D.I., Woelkerling, W.J., Quantitative study of sediment contribution by epiphytic coralline red algae in seagrass meadows in Shark Bay, Western Australia (1988) Marine Ecology Progress Series, 43, pp. 71-77
Download: 0854.pdf