Test case generation for adequacy of floating-point to fixed-point conversion

Pham T.-H., Truong A.-H., Chin W.-N., Aoshima T.
Department of Software Engineering, College of Technology, Vietnam National University, Hanoi, 144 Xuan Thuy, Hanoi, Viet Nam; Department of Computer Science, School of Computing, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore; Panasonic RandD Center Vietnam, No. 1 Lang-Hoa Lac, Hanoi, Viet Nam

Abstract: Porting an application written for personal computer to embedded devices requires conversion of floating-point numbers and operations into fixed-point ones. Testing the conversion hence requires the latter be as close as possible to the former. The closeness is orthogonal to code coverage and requires different strategies to generate a test suite that reveals the gap between the two functions. We introduce a new test adequacy criterion and propose several metrics to quantify the closeness of two functions. After that we propose a method to generate a better test suite from a given one for the test adequacy criteria. We also show experimental results on some well-known mathematical functions. © 2010 Elsevier B.V.

Author Keywords: Fixed-point conversion; Quality assurance; Test cases generation
Index Keywords: Code coverage; Embedded device; Fixed-point conversion; Floating point numbers; Mathematical functions; Test adequacy criteria; Test case generation; Test cases generation; Digital arithmetic; Orthogonal functions; Personal computers; Quality assurance; Quality control; Testing

Year: 2010
Source title: Electronic Notes in Theoretical Computer Science
Volume: 266
Issue: C
Page: 49-61
Link: Scopus Link
Correspondence Address: Pham, T.-H.; Department of Software Engineering, College of Technology, Vietnam National University, Hanoi, 144 Xuan Thuy, Hanoi, Viet Nam; email: phamtuanhung@vnu.edu.vn
ISSN: 15710661
DOI: 10.1016/j.entcs.2010.08.048
Language of Original Document: English
Abbreviated Source Title: Electronic Notes in Theoretical Computer Science
Document Type: Conference Paper
Source: Scopus
Authors with affiliations:
• Pham, T.-H., Department of Software Engineering, College of Technology, Vietnam National University, Hanoi, 144 Xuan Thuy, Hanoi, Viet Nam
• Truong, A.-H., Department of Software Engineering, College of Technology, Vietnam National University, Hanoi, 144 Xuan Thuy, Hanoi, Viet Nam
References:


Inc. Boston, MA, USA


Goubault, E., Putot, S., Under-Approximations of Computations in Real Numbers Based on Generalized Affine Arithmetic (2007) Lecture Notes in Computer Science, 4634, pp. 137-152. , SAS


Koren Bogdan, Automated software test data generation (1990) IEEE Transactions on Software Engineering, 16 (8), pp. 870-879. , DOI 10.1109/32.57624


Download: 0098.pdf